Almost since I started measuring speakers using Klippel NFS, we have been having trouble with tower speakers and ports. The more drivers, the more ports, the worse the results there. A few months ago I experimented and realized that increasing the microphone distance from the speaker helps fair bit. The low frequency sound field is quite complex due to multiple radiating surfaces. The closer you sample to the speaker, the harder the prediction for the far-field is. Increasing distance helped with that but seemingly it was not enough.
So I reached out to Klippel with carefully scenario showing the improvements one gets from increasing distance asking if there is a better solution. I am at the limit of how wide I can go and so is the fixture. To my pleasant surprise, Christian who is the architect of NFS responded that there was an alternative undocumented way to make even better progress. The issue currently is that I set one reference point for measurements and that is set at tweeter axis. High-frequency is where complexity is very high and we need that center to be more optimized. With these tower speakers, the acoustic center for the bass is way lower causing that to be an added problem. Numerical precision is lost quickly and as such, NFS software limits the expansion order in bass. This in turn causes too little energy to be summed to represent the total bass output. With me so far? It is fine if you are not. Let me show the results.
Turns out it is possible to set the reference point for different frequency ranges. That allowed me to set a much more optimal point for bass frequencies, fixing the issue we had.
Revel F328Be with Numerical Optimizations for Bass
I pulled the reference point below 300 Hz to 1/3 of a meter instead of 1.3 meters that it used to be. I guess at the former as my speaker is now packed ready to go to its new owner. That guess was good enough to generate far better results in bass response. Here is a before and after:
We now have both more extension and higher levels in bass. Resulting improvement in preference score is quite high -- one full point! This is due to computation being based on F6 which is now a lot lower in frequency.
Here is the full, new, spin graph:
And comparison to Harman data:
Harman graph shows some waviness between 20 and 40 Hz which is due to their room no longer being anechoic (and hence have "room modes"). We don't have that with Klippel NFS so our accuracy is higher. To my eyes, looks like we have a match in bass but I let you all analyze it further.
Revel F35 with Numerical Optimizations for Bass
F35 measurements which was a year ago was the first time I realized bass response was not correct by good bit. I ran the results by Klippel then but we didn't arrive at a solution until now:
Much more sane results now. Here is the full spin:
Summary
Looks like the problem in bass response is now resolved despite my guessing as to the optimal values. I will have to work a bit to fully establish the correct parameters. Once there, I will go back and re-run the analysis for speakers most impacted.
So I reached out to Klippel with carefully scenario showing the improvements one gets from increasing distance asking if there is a better solution. I am at the limit of how wide I can go and so is the fixture. To my pleasant surprise, Christian who is the architect of NFS responded that there was an alternative undocumented way to make even better progress. The issue currently is that I set one reference point for measurements and that is set at tweeter axis. High-frequency is where complexity is very high and we need that center to be more optimized. With these tower speakers, the acoustic center for the bass is way lower causing that to be an added problem. Numerical precision is lost quickly and as such, NFS software limits the expansion order in bass. This in turn causes too little energy to be summed to represent the total bass output. With me so far? It is fine if you are not. Let me show the results.
Turns out it is possible to set the reference point for different frequency ranges. That allowed me to set a much more optimal point for bass frequencies, fixing the issue we had.
Revel F328Be with Numerical Optimizations for Bass
I pulled the reference point below 300 Hz to 1/3 of a meter instead of 1.3 meters that it used to be. I guess at the former as my speaker is now packed ready to go to its new owner. That guess was good enough to generate far better results in bass response. Here is a before and after:
We now have both more extension and higher levels in bass. Resulting improvement in preference score is quite high -- one full point! This is due to computation being based on F6 which is now a lot lower in frequency.
Here is the full, new, spin graph:
And comparison to Harman data:
Harman graph shows some waviness between 20 and 40 Hz which is due to their room no longer being anechoic (and hence have "room modes"). We don't have that with Klippel NFS so our accuracy is higher. To my eyes, looks like we have a match in bass but I let you all analyze it further.
Revel F35 with Numerical Optimizations for Bass
F35 measurements which was a year ago was the first time I realized bass response was not correct by good bit. I ran the results by Klippel then but we didn't arrive at a solution until now:
Much more sane results now. Here is the full spin:
Summary
Looks like the problem in bass response is now resolved despite my guessing as to the optimal values. I will have to work a bit to fully establish the correct parameters. Once there, I will go back and re-run the analysis for speakers most impacted.
Attachments
Last edited: