So my hypothesis, based on measurements seen on this site and others, is that (audio specific) Switch Mode Power Supplies produce less noise (all 3 ways - directly into the amps DC rails, and via radiated magnetic fields, and mechanically) within the audible 20-20khz band when installed in an amplifier. I set out to draw my own conclusions. And share them here for anyone that's interested.
Disclaimer: Now, as usual, the results are my own, others may vary, my measurement set up did change between the amp having a 'big iron' transformer supply vs the new SMPS. What does this mean? The noise floor and subsequently the THD+N measurements are not really valid between the before and after. Shock horror. But take a look at the 50hz and 100hz noise + harmonics themselves - I think the data there is still useful hence why I'm sharing. Take these with a teaspoon of salt. I am also no electronics engineer - I understand only a little about extra low voltage electronics, I'm much more in tune with speakers. But I am, as I have explained before, a high-er voltage commercial electrical engineer, so I know how to be safe when playing around with appliances, read diagrams and use electrical testing equipment.
The amplifier chosen was a 1982 Vintage class AB Perreaux PMF2150B - made right here in NZ. I believe my serial number puts it around 85-86 year. It has a heavy, noisy EI type transformer inside it. I wanted to find a nice classic piece of HIFI gear, especially after I heard @restorer-john singing this units praises in an older thread. This thing is heavy as hell and hummed like a fridge both mechanically, and through the speakers when connected. Especially the right channel. It was almost unusable as I picked it up on the second hand market. (it was also heavily oscillating which was easily fixed before any of this went down) I tried replacement smoothing caps, bridge rectifier and even soaking the transformer in varnish with very little success. There are other benefits to fitting a SMPS like seriously reduced weight and no mechanical hum. I think some poor SMPS designs can emit very high pitched whines, and some even block out AM/FM radio tuners from working.
Testing conditions;
Class AB amplifier with linear transformer/rectifier/smoothing caps supply. I have attached the amplifier schematic and specs for reference.
1, the right, channel tested - The right channel's input stage is mounted closer to the original transformer and had more power supply noise.
Initial test: - Focusrite Solo input and output - Right channel into 8 ohms - Factory 1200?VA iron transformer, 35A bridge rectifier, 2x 18000uf smoothing caps
After: SMPS test - input - E1DA ADC - output topping E30. Right channel into 8 ohms - Hypex SMPS1200A700 2x85VDC. 1200W supply.
Original Linear Power supply; Focusrite Solo, 5W/6.3V into 8R
Test with Hypex SMPS installed and E1DA ADC: 5W/6.3V 8R
Notable problems with my testing;
Results;
Conclusion;
I can say for certain my testing method is flawed. I cant say for certain that SMPS installed into any class AB (or other class) will net an improvement as this is only one amplifier. There could be much more out of audio band noise that I didn't test for/look at. But the result here is a subjective and objective success, at least to me. First, it fixed the actual physical problems with the amp and second, appears to measure better at least in the areas the power supply affects the output. I didn't set out to say that old iron linear supplies are sh*t - not at all, there are amps with fantastic low noise iron supplies, but for sure the one in my amp here was either no good, or had deteriorated so much over time. Now I don't get a sore back lifting it.
Thoughts, was it worth it, should I stick the iron back in?
P.S. I got the matching SM2 preamp with it and am going to the E1DA to see if a good old fashion 'recap' does anything to the preamp.
Disclaimer: Now, as usual, the results are my own, others may vary, my measurement set up did change between the amp having a 'big iron' transformer supply vs the new SMPS. What does this mean? The noise floor and subsequently the THD+N measurements are not really valid between the before and after. Shock horror. But take a look at the 50hz and 100hz noise + harmonics themselves - I think the data there is still useful hence why I'm sharing. Take these with a teaspoon of salt. I am also no electronics engineer - I understand only a little about extra low voltage electronics, I'm much more in tune with speakers. But I am, as I have explained before, a high-er voltage commercial electrical engineer, so I know how to be safe when playing around with appliances, read diagrams and use electrical testing equipment.
The amplifier chosen was a 1982 Vintage class AB Perreaux PMF2150B - made right here in NZ. I believe my serial number puts it around 85-86 year. It has a heavy, noisy EI type transformer inside it. I wanted to find a nice classic piece of HIFI gear, especially after I heard @restorer-john singing this units praises in an older thread. This thing is heavy as hell and hummed like a fridge both mechanically, and through the speakers when connected. Especially the right channel. It was almost unusable as I picked it up on the second hand market. (it was also heavily oscillating which was easily fixed before any of this went down) I tried replacement smoothing caps, bridge rectifier and even soaking the transformer in varnish with very little success. There are other benefits to fitting a SMPS like seriously reduced weight and no mechanical hum. I think some poor SMPS designs can emit very high pitched whines, and some even block out AM/FM radio tuners from working.
Testing conditions;
Class AB amplifier with linear transformer/rectifier/smoothing caps supply. I have attached the amplifier schematic and specs for reference.
1, the right, channel tested - The right channel's input stage is mounted closer to the original transformer and had more power supply noise.
Initial test: - Focusrite Solo input and output - Right channel into 8 ohms - Factory 1200?VA iron transformer, 35A bridge rectifier, 2x 18000uf smoothing caps
After: SMPS test - input - E1DA ADC - output topping E30. Right channel into 8 ohms - Hypex SMPS1200A700 2x85VDC. 1200W supply.
Original Linear Power supply; Focusrite Solo, 5W/6.3V into 8R
Test with Hypex SMPS installed and E1DA ADC: 5W/6.3V 8R
Notable problems with my testing;
- I definitely didn't get enough output levels/tones/sweeps logged when I did the original measurements to compare different power levels etc
- Obviously, the aforementioned testing equipment
- I could have tried replacing the transformer with a Toroid type - supposed to have less magnetic field spray - but the cost of this to NZ was more than the hypex SMPS, much more.
- The (82V) rail voltages are still slightly high with the hypex SMPS (measured 84VDC) - yes but they were also higher with the original transformer, even with the 240V tap (our mains are 230V, but hover around 238V at my place) when I first got the amp I measured 92VDC on the rails with the 230V transformer tap.
- There could be much more out of audio band noise that I didn't test for/look at
Results;
- Notwithstanding the test equipment, the THD+N has gone from 0.3% or -50dB to 0.003% or -90DB, which is somewhat correct due to the 50hz noise being -50dB down in the initial testing. Thats a 40dB SINAD improvement just changing the power supply.
- The amp is now DEAD SILENT, everywhere. I can now use it. Cant hear anything with my ear 2cm from the cones of speakers or the amplifier chassis.
- The amp now measures well below factory specifications for THD, THD+N, hum and noise. I cant say for certain that it didn't before due to the test equipment limitations.
- The amp is probably saved from the landfill, should someone less enthusiastic have purchased it
- Subjectively (notwithstanding the original hum) the amp sounds exactly the same, if not better because there's no hum in silent passages. I actually enjoy using it now.
- There are numerous references to SMPS sounding 'flat' and lacking the 'transient current availability' of linear supplies. I hear none of this, although it is hard if not impossible to do an AB comparison. Would need another factory PMF2150b (and use my auto amp switcher I made.) This could be the case if I drove the amp hard
- What I will admit I have likely done, is limited the 'headroom' of the amplifier - the old linear supplies have been provably better in temporarily overloading which does translate to better headroom for dynamic peaks, however my peaks in my listening never go beyond the 200WPC output of this amplifier anyway. Sure, if you always run your amps hard you may want to stick with old iron, or, oversize the SMPS to something like a 2KW or even 3KW - then you'd be fine.
- The rail voltages don't sag as much under full load with the SMPS compared with the linear supply - could this be going against the design topology and affecting the sound somehow?
- I also admit, the amplifier will likely no longer meet the brochure specs with regards to the full FTC sections, as the power supply would overheat before getting there. I don't listen to full scale sine waves though so I'm happy to live with this.
Conclusion;
I can say for certain my testing method is flawed. I cant say for certain that SMPS installed into any class AB (or other class) will net an improvement as this is only one amplifier. There could be much more out of audio band noise that I didn't test for/look at. But the result here is a subjective and objective success, at least to me. First, it fixed the actual physical problems with the amp and second, appears to measure better at least in the areas the power supply affects the output. I didn't set out to say that old iron linear supplies are sh*t - not at all, there are amps with fantastic low noise iron supplies, but for sure the one in my amp here was either no good, or had deteriorated so much over time. Now I don't get a sore back lifting it.
Thoughts, was it worth it, should I stick the iron back in?
P.S. I got the matching SM2 preamp with it and am going to the E1DA to see if a good old fashion 'recap' does anything to the preamp.
Attachments
Last edited: