However, in more elaborate and expansive systems, where there are several A‑Ds and lots of other digital outboard, it's often more convenient and practical to have a centralised master clock source, and to distribute clocks from that to all of the other devices, all of which are configured as slaves. All master clock units provide numerous word clock outputs, and often several AES11 clocks too (AES11 is basically a silent AES3 signal, intended specifically for clocking purposes). In this kind of system, though, it would be worth ensuring that the A‑D converters all work well when operating on external clocks, to maximise their audio quality.
The only situation where a dedicated master clock unit is truly essential is in systems that have to work with, or alongside, video, such as in music-for-picture and audio‑for‑video post‑production applications. It's necessary here because there must be a specific integer number of samples in every video picture‑frame period, and to achieve that, the audio sample rate has to be synchronised to the picture frame rate. The only practical way to achieve that is to use a master clock generator that is itself sync'ed to an external video reference, or which generates a video reference signal to which video equipment can be sync'ed.