Forum Wide Notification:
We are strongly discouraging random YouTube and similar “Video links” being posted without some detailed type of description as to what you want to highlight, or what you think is important to our community. Another words, what in the video do you want to discuss/dissect/analyze. Also, provide a reasonable TLDR summary and if appropriate the Timestamp in the Video that you wish to highlight.
Starting a new thread with only a link to a Video will be promptly removed. Repeated Video Link Dropping without context will result in Warnings and possible Posting privilege revocation.
Shipmates, feel free to use this post and link to educate new members who do not comply with the rules above.
Thank you for your cooperation and understanding. This is intended to maximize our member’s time and energy.
On Edit: Decided to open this up to constructive feedback and criticism. We are happy to hear your opinions and suggestions.
Below guidance and sample suggestions provided by @antcollinet : (Copy and pasted) Thank you “Ant”
Suggested sections:
An excellent video explaining the basics of how digital audio works, in particular, busting the myth that it is has "stair steps"
Monty uses all analogue test equipment together with a low end DAC to show how even this DAC perfectly reconstructs sound waves, perfectly smoothly. He shows how bit depth (resolution) only impacts the audio in terms of quantisation noise - rather then increasingly jagged steps - even going down to 8 bit audio to show this. He also demonstrates how dither and noise shaping used during sampling (or resampling) can dramatically reduce the audibility (and objectionability) of this noise.
Particularly fascinating for those like me who have a weak grasp of the maths of the Nyquist–Shannon sampling theorem are two particular demos
First - is the demo (at 5:35) of a perfectly reconstructed 20kHz sine wave with 44.1kHz sample rate - even thought there is only just over 1 sample per half cycle.
Second - (at about 20:50) is the demo that time resolution is not limited to sample rate. The edges of a square wave can be placed on a sample, on the next sample - OR - anywhere in between. No time resolution problems (at least not at the sample rate level)
This is a must watch for anyone who can't mathematically prove the sampling theorem backwards, but nevertheless wants to gain a near intuitive understanding of just how well it works.
We are strongly discouraging random YouTube and similar “Video links” being posted without some detailed type of description as to what you want to highlight, or what you think is important to our community. Another words, what in the video do you want to discuss/dissect/analyze. Also, provide a reasonable TLDR summary and if appropriate the Timestamp in the Video that you wish to highlight.
Starting a new thread with only a link to a Video will be promptly removed. Repeated Video Link Dropping without context will result in Warnings and possible Posting privilege revocation.
Shipmates, feel free to use this post and link to educate new members who do not comply with the rules above.
Thank you for your cooperation and understanding. This is intended to maximize our member’s time and energy.
On Edit: Decided to open this up to constructive feedback and criticism. We are happy to hear your opinions and suggestions.
Below guidance and sample suggestions provided by @antcollinet : (Copy and pasted) Thank you “Ant”
Suggested sections:
- Single line overall message of the video
- Short paragraph, more detailed description and highlights
- A few sentences about why the person posting is posting it. What they think of it, what point they are trying to make or open a discussion about by posting it. Highlighted sections with time stamps.
An excellent video explaining the basics of how digital audio works, in particular, busting the myth that it is has "stair steps"
Monty uses all analogue test equipment together with a low end DAC to show how even this DAC perfectly reconstructs sound waves, perfectly smoothly. He shows how bit depth (resolution) only impacts the audio in terms of quantisation noise - rather then increasingly jagged steps - even going down to 8 bit audio to show this. He also demonstrates how dither and noise shaping used during sampling (or resampling) can dramatically reduce the audibility (and objectionability) of this noise.
Particularly fascinating for those like me who have a weak grasp of the maths of the Nyquist–Shannon sampling theorem are two particular demos
First - is the demo (at 5:35) of a perfectly reconstructed 20kHz sine wave with 44.1kHz sample rate - even thought there is only just over 1 sample per half cycle.
Second - (at about 20:50) is the demo that time resolution is not limited to sample rate. The edges of a square wave can be placed on a sample, on the next sample - OR - anywhere in between. No time resolution problems (at least not at the sample rate level)
This is a must watch for anyone who can't mathematically prove the sampling theorem backwards, but nevertheless wants to gain a near intuitive understanding of just how well it works.
Last edited: