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Multitone Signals with Low Crest Factor
STEPHEN BOYD, MEMBER, IEEE

Abstract —Using some results from the recent mathematics literature,
we show how to generate signals with perfect low-pass or bandpass spectra
which have very low crest factors (under 6 dB). An application to multitone
frequency response testing is given.

I. NOTATION AND PRELIMINARIES

We will be concerned with periodic signals. For a T-periodic
signal u, the L and L? norms are defined by

llull, £ suplu( )}
!

and

|wmé(%L740fmyﬂ.

In engineering terms, ||u||,, is just the peak of the signal wu;
llu]l, is its rms value.

We define the crest factor of a nonzero signal as the ratio of its
peak to rms value

uw
cr(uy & 1

Nall,

Often the crest factor is given in decibels, ie., 20 log CF(x).
It is an important fact that the crest factor is always at least
one. This can be seen as follows: w(s)? <|[ju||2, for all ¢, hence

1 .7
74 () de < ui.

Taking, square roots and dividing yields CF(u) > 1.

A signal can have a crest factor of one only if it is a switching
signal, that is, takes on only the values + |ju||,.. Intuitively, a
signal with low crest factor spends most of its time near the
values 4 ||u|[,,. This can be made precise by studying the ampli-
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tude distribution of a signal u
F.(a) 2T ({1 €[0.T)ju(1)] > a})

where u(E) denotes the total length (technically, Lebesgue mea-
sure) of the set E. Thus, F,(a) is the proportion of time the
signal exceeds a in absolute value, and so, of course, decreases as
a increases. In terms of F,

llulle, = min{ a| F,(a) = 0} (1)
and
0 1/2
hul, = ( f"20F, (a) da) @
0
which can be seen as follows. In general
1 .7 w0
7] 1(0)1di= ["F.(a) da ()

{(which in fact is another important norm of u, the I' norm,
flull,). Noting that the amplitude distribution of u? is F(a)=
F.(/a). (3) yields

;Lr(u(z))zdmfowﬁ,z(a)da

=f0°°1:;(|/;)da=j(;w2aﬁ(a)da

which gives (2) on taking square roots.

Thus [ju||3, which is the total power in u, is a weighted integral
of its amplitude distribution function. From (1.1) and (1.2), it is
clear that the amplitude distribution which maximizes llu||, sub-
Ject 1o |jul|,=A is one for a< A and then zero for g > A.
Moreover the amplitude distributions of low crest factor signals
must do most of their decreasing near g = |lull,.. Figures 1 and 4
show two unit-power signals and their amplitude distributions.
The first has a large crest factor of 8 and an appropriately spread
out amplitude distribution; the second has a lower crest factor of
2 and a less spread out amplitude distribution.

All of the following is independent of the period T so for
notational simplicity we will take 7= 2# in the sequel.

II.  CREST FACTOR OF MULTITONE SIGNALS
Consider the multitone signal

) No+ N
u(t)=y— ¥ cos(kt+8,) (4)
N k= Ny +1

where N, > 0. The Fourier coefficients of u satisfy

2
i<t §r Mo<ksNo+ N (5)
0, otherwise

Thus, the rms value of u is||u|}, =ViZ|iy,|* =1, regardless of the
phases 8. For this reason, we call & a unit power signal with
perfect bandpass spectrum (if Ny, > 0) or perfect low-pass or
boxcar spectrum (if N, = 0).!

'If desired. the low-pass spectrum signal can start with a dc term, for
example,

N-1

2
w() = 2 ;z-."n cos{kr +8,)

with 8, = 0.
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Fig. 1. (a) 32-1one zero-phase signal. (b) Amplitude distribution of 32-tone
zero-phase signal.

While the rms level is independent of the phases, the peak
(which is also CF(u)) changes dramatically with the phases. The
question we address is: How do we choose the phases 8, in (4) to
minimize the crest factor of u, or at least to make it small?

The worst choice of phases is §, =0, k=1,---, N, which
yields a peak |u|l,, =v2N (which occurs at ¢ =0), Fig. 1 shows
the 32-tone multitone signal with zero phases, and its amplitude
distribution.

If the &’s vary linearly, eg., 8, = 7k, then the peak remains
V2N . It is clear that some sort of random pattern of phases is
needed so that cancellations always keep |u(r)| small. In fact,
random phases yield crest factors on the order of \/log N, which
is much smaller than VN, but still grows with N {1].

In the sequel, we will show that the crest factor can be made
quite small, under 6 dB, for arbitrarily large N, that is, arbitrarily
many tones. It is surprising that signals can be designed which
satisfy both the frequency domain censtraint (5) and the time-
domain constraint that CF(u) be small.

Two choices of phases will be presented. Neither choice yields
the global minimum crest factor achievable, but both yield very
small crest factors, at most a few decibels over the minimum
achievable (which, although unknown, must exceed 0 dB). Both
choices of phases have the advantage of being very easy to
compule or generate,

The first choice of phases, due to Shapiro and Rudin, can be
proved to have crest factor under 6 dB when the number of tones
is a power of two (a very common situation, e.g., in FFT-based
frequency response measurement), and to have a reasonably
small crest factor in all cases. The Shapiro-Rudin phases §{5 ®
are in fact either 0 or 7, and do not depend on N, the number of
tones.

The second choice of phases is suggested in Newman [2] in
connection with a different problem. Numerical investigations
show that Newman’s phases yield smaller crest factors (about 4.6
dB, decreasing as N increases) than the Rudin-Shapiro phases.
At the moment, there is no proof that the Newman phases
always yield very low crest factors, but the numerical evidence
suggests so.
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III. THE SHAPIRO-RUDIN PHASES

Using a result due to Shapiro and Rudin, [3], [4], we now show
that whenever N is a power of 2, there are phases which yield a
low crest factor of 2. To do this, we will need to define a certain
sequence of signs, that is, a sequence of 1's and — 1’s. Start with
the string p =11, and repeatedly perform the following: con-
catenate to p a copy of p with its second half negated. Fig. 2
shows the first few strings constructed. Note that the strings
constructed extend each other, and so form the initial strings of a
whole sequence of 1's and —1’s.

Definition; The kth Rudin sign r, is the kth element of the
sequence generated.

Thus,eg., n=r;=land r,=r,=—1,

There are other ways to describe the Rudin signs r,; for
example, in Appendix II, we give a very short program which
computes r;.

Theorem: Let

2 N
ulSRNN & 5 Y recos((k+ Ny)e). (6)
k=1

Then for N =2/, we have
CF(ufd ") =Py, < 2.

Remark: 1f N, = —1, so there is a dc term in (6), we still have
CFu'S Ry g2

The proof is given in Appendix IL

Thus, with the phases

8[(‘5711) = {

the signal (4) has a crest factor at most 6 dB. Note that the
theorem means that there are multitone signals with an arbi-
tranily large number of tones which have a crest factor at most 6
dB; in particular, with proper choice of phases, the growth of a
crest factor with N can be avoided.

If N is not a power of 2, it turns out that the signal u(§~R)
defined in (6) still has a relatively low crest factor, especially if N
is close to a power of two. Fig. 3 shows CF(u{$ ™) for n=
1,--,100.

Note that the crest factor dips to two when the number of
tones is a power of two, and rises a bit in between. For larger N,
the crest factor behaves the same way.

Fig. 4 shows the 32-tone Shapiro-Rudin signal and its ampli-
tude distribution. Note that the amplitude distribution is nearly
finear, that is, the signal is nearly uniformiy distributed. This is
true for larger N as well.

0, r.=1
7, n=-1

IV. THE NEWMAN PHASES
The phases suggested by Newman are, for N tones
2
SNEW) _ mk -1y )
, N

Numerical investigation shows that the crest factor of the
Newman multitones

N
WQEW(1) 2aN-T T cos((k + Ny) 1+ 8{NEW)
k=1

is always very small, about 4.6 dB for moderate N (up o a few
hundred) and decreasing slightly for larger N.2 In all cases

?Once again we can set N, = — 1 if desired.
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Fig. 2. First few strings in construction of Shapiro-Rudin sequence,
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Fig. 3. Crest factor of Shapiro-Rudin signals.
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Fig. 4. (a) 32-tone Shapiro-Rudin signal. (b) Amplitude distribution of

32-tone Shapiro-Rudin signal.

checked, the Newman multitones had crest factors smaller than
the Shapiro-Rudin multitones, and we suspect that this is true for
all N. It is interesting that while phases which vary linearly yield
the worst crest factor possible, the Newman phases, which vary
quadratically, yield very close to the minimum achievable.

Fig. 5 shows CF(u{™™)) for N=1,---,100. Note the small
variation in crest factor with N; for N larger, the variation is
even smaller.

Fig. 6 shows the 32-tone Newman multitone and its amplitude
distribution. Note the curious resemblance to a swept frequency
signal (we remind the reader that the spectrum of the signal is
perfect, ie., given by (5)). The Newman signal is also nearly
uniformly distributed on [ - jjul|,, ||u||. ).
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Fig. 6. (a) 32-tonc Newman signal. (b) Amplitude distribution of 32-tone
Newman signal.

V. MUuULTITONE FREQUENCY RESPONSE TESTING

The signal (4) is an appropriate probing signal for making
nonparametric measurements of the frequency response of a
linear system, specifically, measuring H( jkT ') for k =1,---, N.
Let us consider the S/N ratio we can achieve using a B-bit D/A
(quantizer) to generate the probing signal (4). Let A be the
resolution of the D/A, so that its output range is +27 'A. To
avoid clipping, we must have

CF(u) = full,, < 2% 'A.
Thus
A2 BCF(u).
An excellent approximation is that the quantization error has
the amplitude distribution function which decreases linearly from

one at a =0 to zero at a = A /2. Hence, the quantizer noise has
rms value & /y12 . Thus
253

S/Ng ——
NS D
or approximately

20logS/N < 68 +5 - 20log CF(u).

The important point is that an n decibel decrease in the crest
factor of the probing signal yields an » decibel increase in

quantizer S/N ratio. For example, if we use the Newman phases,
the /N ratio of our probing signal exceeds 6 B dB. The Newman
phases are used in Boyd, Tang, and Chua (5] for multitone
measurements of nonlinear systems.

Of course, there is also the problem of A/D quantizer noise,
While little precise can be said, we make these general remarks. It
is possible that the output of our device under test has a high
crest factor, even though its input has a low crest factor, but most
systems encountered in practice do not drastically increase the
crest factor of a signal. For example, if the system whose frequency
response we are measuring in an allpass with phases the negative
of the phases we use in our probing signal, then its output signal
has a high (V2 V) crest factor, and, hence, our A /D quantization
noise is high. But such a situation is very unlikely. This pathologi-
cal system has a response which varies drastically with k, and so
it is inappropriate to make the nonparametric measurements
above, that is, the frequency spacing 7! is not fine enough.

V1. CoNcLUSION

We have shown two simple choices of phases which yield a
nearly minimal crest factor for a multitone signal.

We close with two comments. First, standard optimization
techniques do not help much in the design of low crest factor
signals. The crest factor is a very complicated function of the
phases, with very many local minima. A descent routine, started
either from Newman’s or Shapiro and Rudin’s phases, yields
minimal decrease in the crest factor,

Our second comment concerns the question, how small can the
crest factor be made? According to a recent result of Kahane (6],
there exist choices of phases which yield crest factors approach-
ingy2 (3dB)as N gets large. Kahane's proof uses a probabilistic
argument, so, unfortunately, it is not possible to directly con-
struct these phases. Note that Newman's phases yield a crest
factor only a decibel and a half greater.

It 15 an open question whether the crest factor can be made
smaller than 3 dB, but, of course, for most applications (for
example, frequency response testing), a crest factor of 6 dB or 4.6
dB is fine,

APPENDIX 1
GENERATING THE RUDIN-SHAPIRO SIGNS

Although the construction by which we defined the Rudin
signs can be used directly to generate the 1, the following fact
simplifies the computation.

Fact: r, = (- 1)", where L is the number of pairs of consecu-
tive ones in the binary expansion of &k —1.

This fact is readily turned into an algorithm to compute 7.
For example, the following C-language function computes r,,
given k:

rudin_sign( k)

{

int previous_bit, sign =1;

k=k-1;
while (k > 0)
{
previous_bit = £ %2;
if ((k=k/2)= =0) break;
if (previous_bit = =1 && k%2 = =1) sign = -sign;
}

return(sign);
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APPENDIX I1
PROOF OF THEOREM

The following short proof follows Rudin [4].
For I=1,2,-- . define polynomials

2!
P(z)2 ¥ rst
k=1

2/--1 zl
0/(z2)4 E nzt - Z ezt
k=1 k=274

Note that the coefficients of P, are exactly the /th string in the
construction of the r, given in Section 11, and the coefficients of
Q, are the /th string, with its second half negated. Thus, we have

Po=ph +221QI 2 =PI_22’ i

Hence, for |z|=1

Wil +1Q0s = 1P, + 27Q, +|P, - 270, (Ala)

= 2P +2127Q) = 2(IA +1Q,?). (Alb)
Since | P> +]Q,|> = 4, (A1) tells us that for all / and |z[=1
|PP +1Q,2 =21
Consequently, for |z|=1
[Pl 2072,

Thus, for |z]=1, |Re ()| <212 We finish the proof by
noting that for N =2

(S—-R) 2 it
ui M) = v Re P (e")

|u(5*|l)(’)|< E 2(“1)/2:2 [w|
N Y '

Remark: The Shapiro-Rudin phases really yield a complex
signal with crest factor y2 ; its real (or imaginary) part is a real
signal with crest factor 2.

so that
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