
Characteristic impedance 
Suppose, though, that we had a set of parallel wires of infinite length, with no lamp at 
the end. What would happen when we close the switch? Being that there is no longer 
a load at the end of the wires, this circuit is open. Would there be no current at all? 
(Figure )  

 

Driving an infinite transmission line. 

Despite being able to avoid wire resistance through the use of superconductors in this 
“thought experiment,” we cannot eliminate capacitance along the wires' lengths. Any 
pair of conductors separated by an insulating medium creates capacitance between 
those conductors: (Figure )  

 

Equivalent circuit showing stray capacitance between conductors. 

Voltage applied between two conductors creates an electric field between those 
conductors. Energy is stored in this electric field, and this storage of energy results in 
an opposition to change in voltage. The reaction of a capacitance against changes in 
voltage is described by the equation i = C(de/dt), which tells us that current will be 
drawn proportional to the voltage's rate of change over time. Thus, when the switch is 
closed, the capacitance between conductors will react against the sudden voltage 
increase by charging up and drawing current from the source. According to the 
equation, an instant rise in applied voltage (as produced by perfect switch closure) 
gives rise to an infinite charging current.  



However, the current drawn by a pair of parallel wires will not be infinite, because 
there exists series impedance along the wires due to inductance. (Figure below) 
Remember that current through any conductor develops a magnetic field of 
proportional magnitude. Energy is stored in this magnetic field, (Figure below) and 
this storage of energy results in an opposition to change in current. Each wire 
develops a magnetic field as it carries charging current for the capacitance between 
the wires, and in so doing drops voltage according to the inductance equation e = 
L(di/dt). This voltage drop limits the voltage rate-of-change across the distributed 
capacitance, preventing the current from ever reaching an infinite magnitude:  

 

Equivalent circuit showing stray capacitance and inductance. 

 

Voltage charges capacitance, current charges inductance. 

Because the electrons in the two wires transfer motion to and from each other at 
nearly the speed of light, the “wave front” of voltage and current change will 
propagate down the length of the wires at that same velocity, resulting in the 
distributed capacitance and inductance progressively charging to full voltage and 
current, respectively, like this: (Figures , , , )  



 

Uncharged transmission line. 

 

Begin wave propagation. 

 

Continue wave propagation. 

 



 

Propagate at speed of light. 

The end result of these interactions is a constant current of limited magnitude through 
the battery source. Since the wires are infinitely long, their distributed capacitance 
will never fully charge to the source voltage, and their distributed inductance will 
never allow unlimited charging current. In other words, this pair of wires will draw 
current from the source so long as the switch is closed, behaving as a constant load. 
No longer are the wires merely conductors of electrical current and carriers of voltage, 
but now constitute a circuit component in themselves, with unique characteristics. No 
longer are the two wires merely a pair of conductors, but rather a transmission line.  

As a constant load, the transmission line's response to applied voltage is resistive 
rather than reactive, despite being comprised purely of inductance and capacitance 
(assuming superconducting wires with zero resistance). We can say this because there 
is no difference from the battery's perspective between a resistor eternally dissipating 
energy and an infinite transmission line eternally absorbing energy. The impedance 
(resistance) of this line in ohms is called the characteristic impedance, and it is fixed 
by the geometry of the two conductors. For a parallel-wire line with air insulation, the 
characteristic impedance may be calculated as such:  



 

If the transmission line is coaxial in construction, the characteristic impedance follows 
a different equation:  

 

In both equations, identical units of measurement must be used in both terms of the 
fraction. If the insulating material is other than air (or a vacuum), both the 
characteristic impedance and the propagation velocity will be affected. The ratio of a 
transmission line's true propagation velocity and the speed of light in a vacuum is 
called the velocity factor of that line.  

Velocity factor is purely a factor of the insulating material's relative permittivity 
(otherwise known as its dielectric constant), defined as the ratio of a material's 
electric field permittivity to that of a pure vacuum. The velocity factor of any cable 
type -- coaxial or otherwise -- may be calculated quite simply by the following 
formula:  



 

Characteristic impedance is also known as natural impedance, and it refers to the 
equivalent resistance of a transmission line if it were infinitely long, owing to 
distributed capacitance and inductance as the voltage and current “waves” propagate 
along its length at a propagation velocity equal to some large fraction of light speed.  

It can be seen in either of the first two equations that a transmission line's 
characteristic impedance (Z0) increases as the conductor spacing increases. If the 
conductors are moved away from each other, the distributed capacitance will decrease 
(greater spacing between capacitor “plates”), and the distributed inductance will 
increase (less cancellation of the two opposing magnetic fields). Less parallel 
capacitance and more series inductance results in a smaller current drawn by the line 
for any given amount of applied voltage, which by definition is a greater impedance. 
Conversely, bringing the two conductors closer together increases the parallel 
capacitance and decreases the series inductance. Both changes result in a larger 
current drawn for a given applied voltage, equating to a lesser impedance.  

Barring any dissipative effects such as dielectric “leakage” and conductor resistance, 
the characteristic impedance of a transmission line is equal to the square root of the 
ratio of the line's inductance per unit length divided by the line's capacitance per unit 
length:  

 

 REVIEW: 



 A transmission line is a pair of parallel conductors exhibiting certain 
characteristics due to distributed capacitance and inductance along its length. 

 When a voltage is suddenly applied to one end of a transmission line, both a 
voltage “wave” and a current “wave” propagate along the line at nearly light 
speed. 

 If a DC voltage is applied to one end of an infinitely long transmission line, 
the line will draw current from the DC source as though it were a constant 
resistance. 

 The characteristic impedance (Z0) of a transmission line is the resistance it 
would exhibit if it were infinite in length. This is entirely different from 
leakage resistance of the dielectric separating the two conductors, and the 
metallic resistance of the wires themselves. Characteristic impedance is purely 
a function of the capacitance and inductance distributed along the line's length, 
and would exist even if the dielectric were perfect (infinite parallel resistance) 
and the wires superconducting (zero series resistance). 

 Velocity factor is a fractional value relating a transmission line's propagation 
speed to the speed of light in a vacuum. Values range between 0.66 and 0.80 
for typical two-wire lines and coaxial cables. For any cable type, it is equal to 
the reciprocal (1/x) of the square root of the relative permittivity of the cable's 
insulation. 

 


